Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage.
نویسندگان
چکیده
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1).
منابع مشابه
LiMn(1-x)Fe(x)PO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries.
Olivine-type lithium transition-metal phosphates LiMPO4 (M=Fe, Mn, Co, or Ni) have been intensively investigated as promising cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent cycle life, thermal stability, environmental benignity, and low cost. However, the inherently low ionic and electrical conductivities of LiMPO4 seriously limit Li + in...
متن کاملAdvanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.
Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker age...
متن کاملFacile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature
Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 v...
متن کاملUltrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries
An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20-40 nm, length of 30-100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8-10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m(2) g(-1). The loading of CNT, in terms of the weight ratio of Fe3O4 nan...
متن کاملReduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor.
Developing new materials for electrochemical supercapacitors with higher energy density has recently gained tremendous impetus in the context of effective utilization of renewable energy. Herein, we report a simple one-pot synthesis of bundled nanorods of Cu(OH)2 embedded in a matrix of reduced graphene oxide (Cu(OH)2@RGO) under mild hydrothermal conditions of 80 °C for 1 h. The synthesized mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2014